
AD-A132 466 THE AMPLITUDE DENSITY FUNCTION AND HIGH-RESOLUTION 1/1
FREQUENCY ANALYSIS OF TI

N 
SERIES(U) STANFORD UNIV CA

DEPT OF STATISTICS A J IZENMAN 0 SEP 83 TR-337
UNCLASSIFIED N00014-7-C0475 F/G 12/1 NL

mENhEhhhMEN
I/Bil moll



MA

11111 ,. 
_ 

1_ 
, .t 8 

M25

mliii111111.2.0

I11IL25III .

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS -1963- A

4 

1





r K. Sioni For

NTIS GRA&I
DTIC TAB
Unannounced
Justification -

Distribution/ ....

Availability Codes
- vail and/or

Dist Special

THE AMPLITUDE DENSITY FUNCTION AND HIGH-RESOLUTION
FREQUENCY ANALYSIS OF TIPE SERIES

BY

ALAN JULIAN IZENMAN

TECHNICAL REPORT NO. 337

SEPTEMBER 6, 1983

Prepared Under Contract

N00014-76-C-0475 (NR-042-267)

For the Office of Naval Research

Herbert Solomon, Project Director

Reproduction in Whole or in Part is Permitted
for any Purpose of the United States Government

Approved for public release; distribution unlimited.

DTIC
DEPARTMENT OF STATISTICS FL:CTE

STANFORD UNIVERSITY SEP 15 1983
STANFORD, CALIFORNIA

D



-1-

1. ITRhDUCTIJt4

There have been a number of different approaches in the scientific

literature to the frequency analysis of time series, most notably the

periodogran technique of Schuster (1906) and the maximm entropy method

of Burg (1968). The periodogra approach was substantially improved

when the fast Fourier transform algorithms became widely avallable

(Good 1958; Cooley and Tukey 1965) as a nens of speeding up the com-

putations; this, plus the variety of smoothing algorithm proposed for

improving the statistical properties of the periodogram (Daniell 1946;

Blackman and Tukey 1958; Parzen 1961; Cogburn and Davis 1974; Vahba 1979),

and the extension of these ideas to higher-order spectral estimation

(Brillinger and Rosenblatt 1967), have together ensured the popularity.

at least in the statistical literature, of periodogram-based techniques

for spectrum estimation (Koopmns 1974; Brllinger 1975; Bloomfield 1976).

Concern, however, over the relatively low resolution properties of

the periodogram (and also of its smoothed versions) prompted the geophysics,

astronomy, and engineering fields to turn towards the higher resolution

mxmm entropy method of spectrum estimation (Mlrych and Bishop 1975;

Kirk at al 1979), especially when it came to the analysis of short data

records. For example, in Wells and Chinnery (1973), the miniamm entropy

method was used to separate the Chandler spectral component at approxL-

mtely 0.83 cycles per year (cpy) from the annual spectral component at

1.0 cpy in short records of astronomical latitude and polar motion data.

In Bolt and Currie (1975), the maximum entropy method was shown to be

superior to the periodogram in terms of enhanced precision and number of

torsional eigenperiods detected from data recorded at Trieste following
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the 1960 Chilean earthquake. The maxzin entropy method was also used in

Jensen and Ulrycb (1973) to analyze the perturbation notions of Barnard's

Star and provide detailed iaformation concerning the number and orbital

periods of its unseen companion planets.

The equivalence of the Maximu= entropy method with the least-squares

fitting of very high order autoregressive models we pointed out by Lacoss

(1971) and van den Bon (1971), and Its relationship to the maxioo

likelihood spectrum estimator by Burg (1972). The paper of Berk (1974) is

relevant here. Critics of the maxim= entropy method have pointed to its

sensitivity to the selection of the order of the autoregressive process,

the computational complexity and programming expene of the method, its

lack of a variance estimate for the resulting spectral density estimator,

interpretation problems (since it Is not clear what the relationship is

between the "power" of the maximum entropy spectral density and the true

amplitude of the spectral component at a particular frequency), and the

difficulty of extending It to the frequency analysis of Multiple series.

We refer the Interested reader to the papers by Ulrych (1972), Akaik

(1969), Berring (1980), and to the references therein.

With these coments in Mind, we present a different approach to the

traditional methods of frequency analysis of time series. Unlike the

periodogram technique and the Maximm entropy method, we do not attempt to

estimate the power spectrum of a series; rather, we direct attention towards

the exploratory screening, Identification, and resolution of any significant

frequencies that Might be present in a time series. Tor a discussion of the

resolution problem, sO, for esample, Jenkins and Watts (1968, pp. 277-279),

Brillinger (1975, p. 69), and Bloomfield (1976, pp. 96 and 172).



-3-

To accomplish this objective, we consider (in Section 2) a quantity

termed the "amplitude density function" which was introduced in Siddlqui

and Izenman (1981) adapted from an idea of Paul (1972), and which Is derived

from the spectral representation of the sum of an harmonic regression func-

tion and a stochastic error process, and on the Inversion theorem associated

with that representation. The amplitude density function as defined in

Section 2 possesses the twin desirable properties of mus square consistency

and high frequency resolution, is related to the finite Fourier transform

of a tapered time series, and as such, can be computed using fast Fourier

transform methods.

After using the amplitude density function to dentify a (possibly, large)

number of prominent frequencies in a series, the next step is to select a

subset of those frequencies as input to a "hidden periodicities" regression

model (see Section 3). There are basically two methods in the statistical

literature for testing the significance of suspected periodicities, and

both restrict themselves to the periodogram situation; that is, where the

frequencies to be tested are Fourier frequencies, or, nteger multiples of

T- , and orthogonality relations simplify the analysis. The methods are

those due to Fisher (1929, 1940) and to .artley (1949). See also Siegel

(1980). Little attempt has been made n the statistical literature,

however, towards solving the more general problem of testing arbitrary

non-Fourier frequencies for significance, which is the case when periods

are not integral divisors of the series length. Some work in this direc-

tion can be found in Section 4.4 of Anderson (1971). In Section 3 of this

paper, we discuss the use of straightforward generalizations (to the non-

Fourier frequencies case) of the Fisher and Hartley tests.
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Ve also introduce In this paper (see Section 4.3) a hIgb-resolution

"frequency trace" to investigate the extent and dfrection of possible

nonstatIonarity In a time series. Al1 the techniques descrlbed in this

paper are Illustrated In Section 4 by an extremely detailed frequency

analysis of that perennial favorite, the annual aunspot mbers series

for the period 1749-1979. Mnother novel feature presented In Section 4

is the use of a physically motivated data transfotmation of the sunspot

series which drmatically Isproves the performce of the model described

In Section 2.
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2. SPECTRAL REPRESENATION, THE INVERSION THl M,. AND
THE AMDLITDE DENSITY FUNCTION

Let X(t), t-O,l,±-2,..., denote a time series observed at equispaced

time intervals, where the origin and unit of time are chosen arbitrarily.

Consider the folloving stochastic model:

X(t) - 13(t) + c(t). t-O,,1,2,..., (2.1)

where

(t) - Go + E k.(a cos(2wf t) + Pisin(21fit)) (2.2)

Is the regression function, ia(t) - Z(X(t)), the frequencies, f ,

J-1,2,...,k, as well as their number, k, the lone-term average aO , and

the coefficients ( j, O.), J-1,2,...,k, are all assmed to be unknown

constants, and the error series, e(t), t-0,,1,-2,..., Is a strictly

stationary process with first two moments

E{g(t)) - 0 and cov((t), 6(t+u)) - c(u), t,u-O,ii2,..., (2.3)

where

._.Itc(u) I '". (2.4)

Under condition (2.4), the second-order spectral density function

* 2uifu(25
gc(f) - (,e c(u), . il f I , (2.5)

of the error series Is bounded and uniformly contimous. While c0  and

the coefficients (Cgz., Ba)q j-l,2,...,k, enter the model (2.1)-(2.2) In a

WY.!Il|| ]|O ~ U• ]||IIIIIIIII
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linear fashion, the frequencies fj, J-1,2,... ,k, (and k) enter in a non-

linear way. Thus, If k and the frequencies fj, J-l,2,...k, vwere

nown I uriori, the coefficients could be estimated by standard regression

techniques.

2.1. The Amplitud. Density Function

For convenience, replace the trigonometric functions in (2.2) by

*n9 19 -a -10 n o 1 iS -i
slO 2 1( .2&c~S- (e

and write y,- Deot alobyy the complex congugate of 50 s

that I y oa2 + 6is the squared amplitude of the complex number

yj. Then, (2.2) beo s

0€t) go +  - 2vifit + j" ift 

a 2:ift d% (f), (2.6)
as

where the function A(f) Is defined in terms of its differential increments,

mely,

d%(O) - co. dL(fj) = y"I2, d%(-fj) - j -,2,....k, (2.7)

and U (f) - 0 for all other f in E-41, j3J. The Fourier-StieltJes integral

on the right-hand-side of (2.6) t the spectral representation of the

regression function v (t) in (2.2), and the function % (f), -3 € f , in

(2.6) is of bounded variation.

Furthermore, by a theorem of Craadr (1942), the error series in (2.1)

has a spectral representation given by



-7-

iCt W j 2wif t dACf), (2.0)

where A (f) is a complex-valued stochastic process havwnS orthogonal

Increments; that is, EVdA (f)) - 0, and

RUA, (f)dA (f')) - (f-f')& (f)df. -h ;L f ;L , C2.9)

where 8() is the Kronecker delta (6(a)-i if a-0, and Is 0 otherwise).

Combining (2.6) and (2.8), the spectral representation of the X(t)-

process is, therefore, given by

X(t) - i2uift dAX(f), (2.10)

where AX(f) - A(f) + Ac(f). In this representation, AX(f) has Juips at

f - *fi, J-i,2,...,k, and at f - 0, and is stochastically continuous at

all other points. We shall henceforth call the process AX(f), -A f 

in (2.10) the (complex-valued) amplitude process corresponding to X(t),

t-0,11,t2,..., or, just the amplitude process if the series is understood.

Consider nov a partition of the frequency band (0, Is) Into a nmber

of nonoverlapping subbands of equal length Af ' 0, and let f be an

arbitrary frequency in (0, s) such that

0 -C f- f < f-lhAf -C h. (2.11)

Define

AAx(f) AX(f4hAf) - AX(f-Af) - (f) + ",(f) (2.12)



to be the Incremnt of the amplitude process in the frequency subband

(f-sAf, f4&Af) of length Af around f. Now, if we shrink the value of Af

sufficiently. It will eventually become smaller the in I  a n<k (iafn "

For such a Af, at most one of the k frequeneis In the modal (2.2)

will fall Into an interval of length Af on the frequency axis. It follows

that, for Af smLl enough,

jml, 2.. .,k

and

M-U(f) I(f')df. (2.14)

fhere f' i sin (f-anf, f4 f). Thus, as L + 0,

AM1 (f) 4. 0 and LA(f)/A. g(f), iLf f i f. .j-,2,.o.,k, (2.13)

and

AX1(f) and LA,(f)/Af i. f f f - fj, j-l,2...,k. (2.16)

2he following inversion theorem allows us to express AA(f) In terms of

the series X(t), t-Ol,t2,....

T1eot ,m. If f t hsAf are contuibty points of A (f), and hence also of

AX(f), then

N I n~wtAf) o-2vift X(t), -S f<l,(.7

where, for t-0, the term in the -.- amd Is. X(O)Af, and the limit is taken

io the mean-seuare sense.
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Proof. See Doob (1953), Theorem 4.1 of Chapter X, or Hanan (1970),

Theorem 3" of Chapter 1T.

This theorem, therefore, provides us with a natural estimator of AA(f).

Let T be the number of data values In the time series, and let N be such

that 2N+1 < T, but of the order of T. Take the time-origin to be the

(N+)st value, and write

(T) N sin~wthf) -2:ift
LA1  (f) - . N ft X(t), - ' f < Is. (2.18)

Note that, for real-valued X(t),

A4T)(M AT(-f) and 4T(f+1) - Aj()

so that, without loss of generality, we may take the principal domain of

the estimator (2.18) to be the frequency band 0 < f <j*

There are alternative ways of visualizing T)(f). The finite

Fourier transform of the series X(t), t-0,±1,±2,...,tN, is given by

E  e-2w ift X(t), 0 < f < Is , which, when integrated between the fre-

quencies f-I&f and f4&f, equals

f+s&f
EEN 'e-2-rift t)Id

-t., • xt d) Xdt
f-haf f+&f

- 1 0. -.i(t df I X(t)

-
E .N  I (e/t~f-e7" tw f) e-2w i ft llt)

. T~CT)

so that, if Af is taken to be small (relative to I/T), then AA (f) in

(2.18) will be essentially proportional to the finite Fourier transform

of X(t) at frequency f (0 c f < Ii). The factor b(t)-sIn(wtAf)/wt in (2.18)
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has maximum value Af (at t-0), and will be very close to Af for all

other values of t. In fact, if T-231 and Af - 10 (see Section 4).

then the minimum value of h(t) is 0.9998 X 10-4 (at t-uL15), and the

relative variation of that function is, therefore, (maxim-minIau)/,&f

< 10- 3, or, 0.1 percent. Paul (1972) had a similar idea of using the

integral of the finite Fourier transform of X(t), but did little more

than dwll at length on the inversion formula (2.17).

Furthermore, for a given value of Af, (2.18) may be regarded as

the finite Fourier transform of the "tapered" series Y(t) - h(t)X(t),

t-O,l,12,...,+N, where (Af)-lh(t) is related to the Rlemann-Lanczos

convergence factor for Fourier transforms; see Lanczos (1956, Chapter IV)

and Brillinger (1975, Section 3.3). If we let B(T) (f) - EN e2ifth(t)

be the finite Fourier transform of h(t), then, for Af very small, it

is easy to show that H )(f) - (Af)sin(irfT)/sn(srf), which, as a function

of f, is concentrated around f- 0 with maximum value Tf, and fluctuates

in sign for 0 < f I h; see Brillinger (1975, p. 51).

Consider now the statistic

ai()(f A (2.19)

as an estimator of the (real-valued) function

a1 (f) - 1&A(f)l/Af . (2.20)

for 0 < f < h. We call the statistic (2.19) the amlitude density

functin of the values X(t), t-0,*l,±2,...,+N. In doing this, we

differ from Paul (1972), who used the same terminology for the quantity

(2.17). As an immediate consequence of the above theorem, we have the

following
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Corollary. In the limit, as T s ki) M Is a mean square consistent

estimator of ax(f); that is,

liXT 4 4V,(Ta(f)_aX(f)I).O, 0 < f < 1,2.11a. , o (2.21)

Proof. Use the fact that (mean square) convergence of a sequence of

complex numbers to a complex number Implies (mean square) convergence

of the real and imaginary parts of the former to the corresponding real

and imaginary parts of the latter.

For practical applications, attention will usually center on the

user's choice of Af when computing ai)(f), 0 < f < Is, in (2.19).

Dividing the frequency interval (0,1) into disjoint subintervals each

of length Af means that just under 1/2Af points need to be computed

to obtain the complete graph of a)(f), 0 < f < ;. Thus, for example,

if Af - 10 - 4  (see Section 4), then we need to compute approximately

5000 values. In general, the choice of Af will be tied to the length

of the series, and to the spectral distribution of the k frequencies.

Typically, the longer the series and the larger the number of discrete

frequencies to be recovered, the smaller the value of Af that should

be used. One procedure that works quite well if the series is long and

if little is known concerning its frequency structure Is to use a sequence

of decreasing values of Af which provide, in turn, an Increasing degree

of frequency resolution and smoothness of the graph of T) (f), 0 < f < ;

see Siddiqui and Izenman (1981). Generally, a choice of Af - 10"4 seems

to give useful results for a wide variety of series lengths; see the

discussion in Section 4.3 of this paper. For especially long series

lengths, At - 1O- 5 may be preferred.
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2.2. Frequency Resolution Properties

We next address ourselves to the frequency resolution properties of

the amplitude density function (2.19). Let Af be fixed, but smaller

than min _<n<k( jf-fnj). Since, as a function of f, -,(f) in

(2.20) possesses local maxima at the k points f-f j , J-l,2,...,k, the

locations of the k largest relative maxims of T) (f) (out of, say,

the m* Z k local maxima actually obtained) provide us with appropriate

estimates of the fj, J-l,2,...,k. The resolution properties of r) (f)

then follow from the fact that

[()M]< 1z2. (2.22)

and from published results on the asymptotic properties of periodogra

estimates of the f, J-l,2,...,k, derived under a variety of assump-

tions on the error series. Within the context of the present paper, we

consider the following assumption.

(A) The series c(t), t-O,1l,12,..., in (2.1) is assumed to be

a sequence of Indendently .and identically distributed (i.i.d.) random

variables (a pure noise saeris) each with mean zero and finite variance;

that is, in (2.3) we set ec(u) - 0 for u # 0, wbile (2.4) becomes

ec(O) < m. See Whittle (1952), Walker (1971), and more recently Damleth

and Spjitvoll (1982).

In the following, we write f - (f lf2,..fk) and

f(T) "(T) f ' f (T)), where the f(T) J-l,2,...,k, are the

k largest local maxima of --T(f), 0 < f S, and set
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OT M ., 4 T)(f) (2.23)

Then, subject to an appropriate separation condition imposed on the f

J-l,2,...,k, such that

1lj.1 ,uLnl .,n< k(T f,- n) - (2.24)

(which is needed to ensure that two different frequency estimates do not

converge in probability to the same value), 4M(f) in (2.23) is

maximized when f- (T). We shall also write f. 9 and 0

for the true values of f, C, and 3 respectively, J-l,2,...,k,

and without loss of generality, we set O - 0.

Theorem 2. Let X(t), t-O,±-l,±2,..., be a time series satisfying (2.1)

and (2.2), where the error series C(t) satisfies assumption (A), and

(2.24) holds. Then, f(T)f O( - ), J-l,2,...,k; that is, f(T)
j J-0 p j

converges in probability to fj, as T , J-1,2...,k.

Proof. It suffices to consider the function

(k b(T)(f (2.25)

S- T)(f)]-2 j x • * (2.25)

where (T) - O (T) 2

bx()[x(f)I2, 0 <f < . Set 0 O'.-10

1-l,2,...,k, and H(T)(u) - x N h(t)e -2 w iut 0 < u < k. Then,

folloving the methods of Walker (1971), we have that
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- lk ~ 1 Tf~£o+£o(T)(f3~.)

+-2Ij t 12

t EIbhtteet.

+ le.. 3 te _ ,~j+te(~ h(t) e et)X

x [Z..(Y.,R(T(f.3-f£,o)+y£,oe(T)(fj3+fL.0))]I - (.6

since the variances of the real and laqinary parts of

E~t-I~te 2wLf tC(t) are each respectively Isc(O)(Af) 2 T+ 0(1),* than

,-ZrNf t.t i(t) _O(TL,,
tm-N p~t

There are k2  differences In (2.26) of the form fj-fLO Lv2.'k

J-l,2,...,k; however. according to the separation condition (2.24), only

k of these diffirences can be O(if'), namely. fi-fi~0 . Jn1,2,...,k.

Now, for smail values of u, the function JHR() .12 ; (h&f) 2sin 2 (wuT)/sIn2 (wu)

decreases monotomically from Its absolute maximm of (approximately) (UT) 2

to a minim=m of zero at un * lane, if fj-fj g is small enough,



( ie sdominated by the term lyj f(l(fjf )12 I fct,

b4)(f) _ Iyj. 012 (&f) 2r + 0 (T3/2) . (2.27)

and if (ST) Is a sequence of sets In f-spae for wbich (2.24) hold.,

then,

~cTn(T). ~k& 2 2 )I(T).~f o)12) 0 ( 3 / 2  ( 2.28)

If we now let

anid [T(8) 1C - ST-RT(8) be the complement of LY() With respect to

S T then, for sufficiently small 8,

p l13,4 [T- 2sup (T(f]

a p Ia, [12 k2 2~~0 0,)u (In (T) (f f J0)12),

- (U)~ 2 1k (ct2 40 2 )(P 11S. ',[sin 2 (W8)/T~sin2 (r8/T)])
J- j - J -

2 k 2 2
(A)Z.31 J,0j0;.u

-p Jim It-2.T) (f0
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where f- (fl ,0f2,0*'"" fk, O) " Renc

p li~[(fj(T-fjO - 0

end the theorm follows.

These results have been checked by saimulating a amber of series

consisting of cosiousolds vith discrete frequencies fairly close to

each other, with varying relative amplitudes, and with and without an

additional i.i.d. Gaussian error component having a standard deviation

the size of the largest amplitude. We can report that in every case

so far considered, all frequencies in each of the generated series were

recovered with an error of about 1/10T by using the approach outlined In

this paper. Specific details of these siulat loss wil appear elsewhere.

For the case in which the error series C(t) Is not an l.i.d.

sequence of random variables, results have be obtained for periodogram

estimates of frequency by Hannan (1971, 1973) and by Walker (1973).

gonnan, in his 1971 paper, asumes C(t) to be a linear process; that

Is,

C(t) - g(u)c(t-u). Elg(u)l <- (2.29)

where the C(t) form a pure noise series with zero mean and unit variance

and poesm a continuous spectral density. (amn refers to this as

Condition A.) The error series In (2.29) Is strictly stationary with

finite second moments. Walker (1973) expands the form of (2.29) slightly
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by assuming that the C(t) are also Gaussian with zero mean and finite

variance, and that the coefficients are nomm functims u.-) of

a unknown parameter vector 0. Vannan (1973) makes a moe general

assumptioa that e(t) is a strictly stationary ergodi c process with

mean zero and finite variance, and then obtains an almost sure conver-

gence result for the periodogram estimator of a single (kul) cosinusoidal

component. Such a result may be extended to apply to the methods of this

paper through the relationship (2.22) above.



-18-

3. sV_=CT MAC PRoDCMXS

The graph of the amplitude density function, a (f), 0 < f < N.

will typically display a fairly large number of local peaks, say, a*.

The next logical step, therefore, is to separate out the k signifi-

cant peaks (k < ma) from those that more properly represent the

noise level of the time series in question. Tests for identifying a

dominant set of periodicities have traditionally been based on the

largest few ordinates of the graph of the periodogram of the series;

see Fisher (1929, 1940), Hartley (1949), Siegel (1980), and Section

6.1.4 of Priestley (1981). The problem is also related to the

"bump-huntIng" problem of Good and Gaskins (1980).

For series in vhich mltiple frequencies are present, a stepwisa

search procedure is outlined on p. 34 of Walker (1971); there, it is

suggested that one frequency at a tine be estimated by examining the

largest periodogram ordinate of the residual series after fitting all

previously determined frequency components. Versions of Walker's

suggestion have appeared in recent articles by RiUI (1977) and by

Dgsleth and SpjitvolL (1982). Rill, on the one hand, in what suet

have mounted to a veritable tour do force, claims to have used a

computational technique involving over 100 iterations to estimate Aach

of forty selected frequencies (one at a time) in the series of monthly

mnspot umbers (the actual iteration and search techniques are not

explained in the paper, however). On the other hand, Dausleth and

Spjtvol, also using essentially Walker's stepwIse algorithm, end

up by selecting only eight frequencies n the annual sunspot number
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series. A search procedure for the sunspot series which results In a

reasonable compromise between two such extremes, therefore, appears to

be a worthwhile goal.

in Siddiqui and Izenman (1981), a two-stage search procedure is

described to estimate k and determine those frequencies
(T) f(T) (T)f1 T 2 D""(T f) which are prominent in the series X(t); the first

stage consists of a straightforward adaptation of Fisher's well-known

test for periodiatie, while the second stage uses information about

the error spectrum to make the final choice. Here, we review that method

and compare it with an adaptation of Hartley's (1949) analysis of variance

based method using a maximum-F ratio statistic for fitting one frequency

at a time. We have found, empirically, for a number of series, that the

latter method yields results that are very close to those obtained by

the Siddiqui-Izennan procedure, yet possesses the attractive feature that

it is semi-automatic and can be carried out using only a least-squares

regression program. Simulation .studies of both search procedures for a

variety of situations are clearly needed for future guidance.

3.1. The Siddigui-Izenman Procedure

Preliminary search. For the jth frequency, f(T) Identified as
j.

one of the I* local peaks in the amplitude density function, compute

the following quantities:

a It- WO (X~t )cos(2vfjT t1- (3.1)

b(T) 2 . T (lt..~sn2fT)t)(32
b YT t-uWl )i(wf10 32
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and

(T)] 2  [a(T)2 + E(T)J 2 , (3.3)

where - T-,IT X (t), for J-l,2,...,a*, and order the f(T)V jIl,2,...,u,t-1() 12 1

according to the relative magnitudes of their (C , J-l, 2 ... u . Thus,

if

(CT)) , (T)2  C(T) 2(3.4)€(1) >t(2)1 1 "'" I lc(,*)"

are the ordered values of (3.3). this, In turn, orders the frequencies in
( T ) ( T ) ( T ) N x , a p y F s e '

a corresponding fashion as f(1)" .(2)''f (a*)' ext apply Fisher's

test for periodicity to these a* ordered frequencies. This test

(Fisher 1929) is designed to test H0 : k-0 against E: k Z 1, where

k Is the true number of discrete frequencies in the process under reviev.

Although the test requires [ M ] to be computed for each of the N

Fourier frequencies fr - r/T, r-1,2.... 9N, there exists an Integer

ri, between 1 and N. such that

If (T) - fi L9(3.5)

and o, or 1 rp , th va ue o [c(T)] 2  I
and so, for large T, the value of in 118(3.3) should be fairly close
to the value of c corresponding to j/T. Thus, the generalization

of Fisher's test (Stevens 1939; Fisher 1940) will be approximately valid

for each of the m* normalized versions of (3.4)

5 (T) . rc(T)2. 2
() /iT j -l,2, ...,m5, (3.6)

-n.-
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where ST is the total variance of the observed seris. Set c - 0.05

or 0.01, and define the percentile SJTe by the relation

Prob(8(T ) >S. ,T) -(3.7)

Values of 8 j,T,Q have been tabulated by Shimshoni (1971) for a-0.01

and 0.05, and for (U) N- 5(5)50, J-1,2,5,7,10, and (i) 1-100

(100)3000, J-1,2,5,10,25,.50. Now, compare the value of J(T)1 2 ith

the appropriate value of 28TsJT.T' and carry out this comparison

accordingto the following recipe suggested by ShImshosi. First, take

the value of 21.TCand pass all frequencies whose Cc(T) ]2 values
are greater than 252 .Let the JIL t  frequency be the first one

to fail this test (jl > 1). Next, take the value of gjT and

pass all further frequencies whose c (T)I2 values are greater than

292 th
2sgj,,T,C . When a frequency fas* this second test, say, the J2

frequency, take the value of aJ2,TQ and pass all frequencies for

which their [c(T) 32 values are greater than 2s2 TC t  And so on.

2 2 'TgJ21 T,
The process ends when a new value of 2sTS is greater than the value

of [c T ) ]2 it was supposed to test. All remaiing frequencies are

then failed at this level of significance. The number of frequencies

that are retained (out of the original u*) is denoted by m1 . In certain

situations, major frequencies may be hidden by virtue of their close

proxiity to more powerful frequencies. The next step is to screen the

residual series

€ (T ) - X(t) - MT~Ct), t-1l,2,...,T, (3.8)
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where 41) (t) is the estimated regression function consisting of the

above m1  frequency components; the 2m1+l coefftclants, a0  and

(a, J). J-1,2,...,., in the regression function

V (t) - o+zaIt os(,f()t) + ( ((2rf))t,] (3.9)

are estimated by least-squares, using any standard regression computer

program. Screening is done by computing the aplftude density function

of (3.8), and repeating all the above tests. If m2  denotes the number

of frequencies declared significant at this second-step, ,then m u+m2

Is the total number of sinificant frequencies detected.

Final Search. Estimate the 2m+l coefficients, CIO and (al, Bj).

j-1,2,...,m, in the regression function

(at) - ao + 1= (a cos (2f(T) 0+ 0.sn2f(T) 0,t12..T
B-1it)-)f0 +)

(3.10)
by least-squares, denote the coefficient estimates by a(T and (a T) (T))

j-1,2,..• ,, respectively, and let

I Tl- (E (T) 32 + EOMC )1j, jm,,.,(3.11)

,then, asymptotically, for large T (Grmnander and Rosenblatt 1957, p. 246).

th. approximate covariances of (3.11) are

co,,l(T')l. I (T)i}- 6(i-j~, (f j)/T9. 1vj-1,2,... 9up

(3.12)

wherp 6(s) is the Ironecker delta. If 4 (T)(f) is a suitable estimator of

and if (T)) W S(T)(f*) for some fo, then the bound

i I
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var(I T)) < (T)(cIT. (3.13)

yields an approximate, but conservative, 95 percent confidence

Interval on lj- + ?,namely.

(T) U g (f*)/Tl (3.14)

As long as any of the u frequencies has an associated confidence Interval

(3.14) which does not contain the value zero, then that frequency is

declared significant and is retained in the final model. Otherwise, the

frequency is dropped from further consideration. The value k is then

taken to be the number of significant frequencies from this final

selection stage.

3.2. An F-Directed Search Procedure

Another significance test for periodicities was proposed by Hartley

(1949), who used a least-squares regression approach to finding a different

normalization for the rc(T)j 2  values in (3.4) than vas used In (3.6).U)
Since Hartley's procedure is not as well kmown as that of Fisher, we

shall first review its salient points for the perlodograa case.

From the N Fourier frequencies available, nominate a of the to

be potentially significant. Denote these by rj/T, j - 1,2,...,m, where

rj is an Integer between 1 and N. Next, set

X(t) - so + ec( coo(21rr t/T ) + sin(2irjt/T) I +C(t) * (3.15)

where C(t) is Gaussian and satisfies assumption (A) above, and estimate

(,j )9 Jil,2,...,m, by least-squares. The least-squares estimates are



-24-

iven by (J(T) b(T)), J-l,2,..,, respectively (see (3.1), (3.2).

where f (T) . rj/T, J-l,2v...,m), and the fitted regression function

by

x (T)(t) - i+ e f(T)cos(2lrjt/T) + (~T) sin(2tr tIT). (3.16)

By virtue of the orthogonality of the trigonometric functions in (3.16),

the regression sum of squares (SS.) can be expressed as the sum of a

uncorrelated sums of squares; that is,

SET (X(T) (t) _-]2  T CT) 2 (3.17)res t-nl 2 -. [CJ r ]2

(see (3.3)), where, under the hypothesis that a - 0 in (3.15), each

T (T)2 in (3.17) has an Independent chi-squared distribution with

two degrees of freedom (d.f.). The residual sum of squares (RS ) from

the r-component regression (3.14), namely,

1ss _ z T (x~t)-X( (t)) 2  (3.18)

has an independent cbi-squared distribution with T-2m-l d.f. Hartley's

test statistic for Individual (Fourier) frequencies is, then

W (I ( ) 1 2 SSm(T-2m)/2 (.)

for J-1,2,...,m, where the 1)O." . i""c(m)J are the m largest

values in (3.4) (cf. (3.6)). As an approximation to the upper percentage
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points of the distribution of (3.19), Hartley suggested that the (Fourier)

frequency corresponding to [cjc ] 2 be declared significant at the cLZ
QJ)

level if P ) is larger than the tabulated (a/(m-J+l))Z point of the F

distribution with 2 and T-2a-l d.f., J-l,2,...,m. The value of k

is then taken to be that number of (Fourier) frequencies that are declared

significant by this method.

Typically, however, the a largest local peaks in the graph of the

amplitude density function will not be located at Fourier frequencies,

(T) 2
and, consequently, the [cj ] , J-1,2 ,...,m, will not be uncorrelated.

We could, of course, argue, as we did In Section 3.1, that the differences

b*tween the frequency estimates and their nearest Fourier frequencies

will be relatively small (see (3.5)). so that, for Il , [C MT)] 2  and

[cjT I 1will be approximately uncorrelated, and hence that Hartley's

technique will be approximately valid. However, we prefer instead - both

for computational and for statistical reasons - to re-interpret hartley's

procedure in a slightly different way, and then use that particular formu-

lation here.

It is not difficUlt to see that for the special case of Fourier fre-

quencies Hartley's method is equivalent to the following multistage proce-

dure, and, by virtue of the argument noted in the previous paragraph, 7.

approximately equivalent for the more general case. Since at each stage

we carry out a series of one-component regressions, consideration of a

fairly large number of frequencies is computationally feasible,

especially if T is large. Furthermore. because at each stage we select

a frequency using an F statistic formulation, the overall procedure is

called "F-directed" and resembles a "forward stepwise" regression algorithm.
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In the following discussion we attend to the general case and write

f (T) J-l,2,...,m, for the a nominated frequencies; if these

frequencies are Fourier frequencies, then f(T) . r/Tv j-l,2..., a

for some integer ri between 1 and N.

Consider, then, the problem of selecting k frequencies for the

regression model

x(t) - Q0 + Ek(a cos(2wf()t)+ 0sin(2vf( t))+c(t) , (3.20)j-l J Q) i Qa)
(T)

where f(T) is the first frequency selected, f(2 ) is the second frequency
(1)

selected, and so on, from a set of a potentially significant frequencies

f (T) J-l,2,...,m, k < a. and where e(t) is Gaussian and satisfies

assumption (A). The selection rule is the following.

1. At stop 1, let F;1) be the largest of the a F-ratio statistics,max

F1) J-l,2,...,m, obtained as follows. Regress X(t) on the pair of
• T)

components (cos(2rf (T)t), sn(2wf (T) t)), and obtain the regression mm

of squares. S I )  having 2 d.f. Then, compute the statisticregj '

where RSSa Is the residual sum of squares obtained by regressing X(t)

on all m components (cos(2if( t), sin(2nf(T)t), J-l,2,...,a).

Clearly, F has the F-distribution with 2 and T-2*-l d.f. Set

F( 1l) . max((1) , J-l,2,...,m) . (3.22)



-27-

If F(1) I  "significant", then declare the frequency corresponding to

as being significant, and denote it by f(1). Compute the residua

from X(t) after fitting the regression function (3.20) with k-l.

2. At step 2, let F(2) be the largest of the m-i F-ratio statistics,am

F2 J-l,2,...,m, JO(l), obtained as follows. Regress the residuals from

step 1 on the pair of components (cos(2(rf1')t),sn(2W(1)t)), and obtaina a
the regression sum of squares, SS(2) having 2 d.f. Than, compute

reg n.c

the statistic

F(2) _ .(2) lRSS I(T-2.+l)12 (3.23)
3 regj rn-iwhere RSS,

where RSSn-i is the residual su of squares obtained by regressing

the residuals from step 1 on all the remaining r-i components

(cos(2wf( t), sin(2f T) t)p jml$2...m, a JO(1)). As before, F (2)

has an 7-distribution, but with 2 and (T-2m+l) d.f. Set

-(2) = (2)S(2) - P J-1,2,...,a, 3,(1)l . (3.24)

if ,(2) is "significant", then declare the frequency corresponding to7 f(T)
(2) as being significant, and denote It by f(2) Compute the residuals

from X(t) after fitting the regression function (3.20) with k-2.

3. in general, let f(1) (T) f (T) be the r frequencies declared

f(1) f(2)'" (r)

significant at the conclusion of step r. At step r+l, let 1(01) bemax

the largest of the n-r F-ratio statistics, Fj J-12.... =

JS(l),(2),...,(r), as follows. Regress the residuals from step r on
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the pair of components (cos(21f (M1t), sin(2 1 f(T)t)), and obtain the
s s

eorsl) . having 2 d.f. Then, compute
regrssin a of quaest reg,J'

the statistic

1(r+l) . (SS( l)I/SS I(T-2m+2r-l)/2 (3.25)
i regj -r

ware RSS Is the resdual sum of squares obtained by regressing the

residuals from step r on all the remaining m-r components

(os(2(Tlt), sin( 2  (T) Jt)pJ 2,...,, j (l),(.....,(r)), and set

"  max((+l),j-,2,..,, (2) () (3.26)

If F; :  is "significant", then declare the frequency corresponding tome
as being significant, and denote It by f(T) If 1(t)

(rl (r+l) - , i

"not significant", then ternate the selection procedure. The value

of k is then taken to be the number of frequencies decleared to be signi-

ficaut according to the scheme.

The question of "significance" In the above algoritha relates to the pro-
blen of comparing, at any particular step, the observed value of F. to

the tabulated upper percentage points of the distribution of the largest

order statistic from a set of correlated P variables. Since, at step

r (1 < r < a), the denominators of each of the -,(r) I are Identical,

results obtained for the multivariste F distribution (Gupta and Sobel

1962; [risbmaish and Armitage 1965) vould appear to be applicable.
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However, the numerators of the (T r)} are a correlated sat of 2

variables, which, in turn, leads to more complicated results for the

distribution theory. The paper by Krishnaiah and Rao (1962) may be

useful here in defining a "generalized" multivarlate F distribution;

see Johnson and Kotz (1972, Section 40.8). For the present paper, however,

ve shall use a Bonferroui-type approximation to the upper percentage

points of Fma x  similar to that suggested by Hartley for the independent

case. Thus, at step r (I < r < m), declare F(r) to be significant at

the aZ level if (r )  is larger than the tabulated (c/(-r+l))Z point

of the F distribution with 2 and T-2(-r+l)-l d.f. (we note here

that alternative approximations may be obtained from the multivariate

probability inequalities of Karlin and Rinott (1980).)

If additional significant frequencies are suspected, but which may

be hidden behind the more powerful ones, the following procedure will

be appropriate. First, teat as above for those a, frequencies which

are considered potentially significant. Let ki of then be declared

signific-at. Then, obtain the residual series by fitting all kZ  fre-

quencies to X(t), and recompute the amplitude density function for the

residual series. If any additional frequencies appear to have relatively

large ordinates in the graph of that function, add these, say u 2  in

number, to the It, previously tested, to arrive at a total of a - " .

Then, repeat the above F-directed search procedure for all a noumnated

frequencies.

I
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4. ANALYSIS OF THE ANNUAL SUNSPOT NUMBERS

The techniques of this paper will nov be Illustrated using the vll-

known time series of annual sunspot relative numbers from 1749 to 1979.

a period of T - 231 years. The data are taken from Vldneier (1961,

pp. 20-21) for the years 1749-1960, and from Izensan (1981, Table 1.1)

for the remaining years.

The sunspot numbers have received a (well-deserved) reputation in

the statistical literature for being one of the most difficult series to

model successfully, primarily because of Its nonstandard features

(Bloomfield 1976). We emphasize here that the analysis presented in

this Section is not claimed to be the best for predicting sunspot behavior

in the future; indeed, the nouGausJain, noustationary. aperiodic, and non-

linear behavior of the series make its fitting and prediction an extremely

complex affair. However, it is precisely because of these nonstandard

features that make the sunspot numbers such an Interesting and nontrivial

example for demonstrating the methodology of this paper.

4.1. The Annual Sunspot Numbers

The graph of the amplitude density function (2.20) with Af - 10 of

the mean-corrected annual sunspot numbers is displayed in Figure 1. The

prominent features of that graph include two clusters of large peaks, one

at the very low frequencies, and the other at frequencies around the

so-called "11-year sunspot period". Iinety-eight local maxima were

located within the frequency band 0 . f L h. The next step, therefore, is

to screen these peaks for significant frequencies. We shall use the two

search procedures described In Section 3.

- w
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(1) First, we consider the search method outlined In Section 3.1.

The total variance of the series 4 - 1583.32826. If we carry out the

procedure as described, ve pass a total of nine frequencleA, a nmmber

comparable to that obtained by Dsaslth and SpjitvoU (1982). However,

when compared to results obtained by Hill (1977), st and Kirk (1977),

and Siddiqul and Izmnman (1981) for the monthly sunspot numbers, and

since it can be argued that the major frequencies In the annual series

should be similar in number and location to those major low frequencies

in the monthly series, ve conclude that, for some reason, too few frequen-

cies are being passed here. The problem lies in the fact that the annual

sunspot numbers are computed from the monthly numbers by averaging in dis-

joint blocks of length twelve, thereby smoothing out the highest amplitudes

of the monthly sunspot numbers. An adjustment is necessary, therefore - in

a downwards direction - to the entries in ShIshoni's Tables to take this

into account. We propose to do this here by multiplying Shimshoni's cri-

tical values, 8 j,T,n, by a "compensation factor", 2 , say, 0 < h12  1,

which we take to be a location parameter of the distribution of the ratio

of the mean to the maximum n a sample of size twelve from some appropriate

underlying distribution defined on [0,"). In general, this problem is non-

trivial and remains open. A related reference is the paper by Maller and

Resnick (1981), which considers the limiting behavior for large sample sizes

of the above ratio statistic; however, their results do not seem to be of

help to us.

Since the results we need are not currently available, we are led to the

following approximation. From the monthly sunspot numbers, we computed the

231 ratios of annual mean to "annual maximum" (that Is, the maximum monthly
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smspot number for that year), and then set h12 - 0.62, the median of all

those values. The histogram of the annual ratio* is displayed In Figure 2.

Thus, ,22b2,1 0 0 0 0 5 - 89.81. This critical value passes the

following eight frequemces:

f (T) T) rc(T) 32

1 .0902 11.087 780.7
2 .1005 9.950 616.3
3 .0107 93.346 343.7
4 .0945 10.582 341.3
5 .1062 9.416 246.7
6 .0172 58.140 173.0
7 .0835 11.976 159.5
8 .0039 256.410 118.7

where(T) is the period (In years) corresponding to fg)V that is, p -

,.(T)
/f(0). Now, Jl-9, and, by interpolation in Shimshoni's Table, we get that

%. 100,0.05 " 0.02902, whence 2s 100005 - 35.32. This second

critical value passes eight further frequencies, namely,

fT) p(T) Ec(T) 2
() )W

9 .1168 8.562 76.3
10 .0772 12.953 71.7
11 .0232 4.698 66.1
12 .1115 8.969 54.7
13 .0716 13.966 54.5
14 .1233 8.110 48.8
15 .0473 21.142 46.6
16 .0668 14.970 43.0

At the next stage, J2717, so that g1 , 1 0 0 , 0 0 5 - 0.02177, and 2 2

- 26.50. The next largest value of [(cT)J2 is 3m.x, corresponding to the

frequency .mxo; however, this value is too low to be passed by this test.

- --
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The value of m is, therefore, 16. A computation of the resulting

sixteen-component regression function, and of the amplitude density function

of the residual series, revealed an additional frequency which Is passed

by the above test, namely,

j f(T) p T) E()0)j) (1)

17 .1199 8.340 46.1

so that m2-1, and hence m-17.

Now, we make a final selection from these seventeen frequencies. After

computing the fitted regression function using these seventeen frequency

components, we examined the autocorrelation and partial autocorrelation

functions of the residual series, and determined that the best, and most

parsimonious fit to that latter series would be a second-order autoregressive

process of the form

C(T)(t) - *1c(T)Ct-1) + 2c (T)(t-2) + d(t),

2
where 8(t) is a white noise process with mean zero and variance a . The

maximum-likelihood estimates and associated standard errors of the two

parameters in the model are:

parameter LE SE

41 .6736 .0652

42 -. 3722 .0662

and 8-.2 146.4. The roots of the corresponding characteristic equation
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are both complex, indicating pseudo-periodic behavior of the t (t)-

process (Box and Jenkins 1976, pp. 58-63). The estimated spectral

density function of the residual series is, therefore, given by

(T) - 2; -2

- 292.8/(1.5923-1.8486cos(2wf)+0.7444cos(4vf)),

where 0 <. f I. The 1ximus of g )(f) occurs at f - f,, where

cos(2wfd - 01(1-#2)/(#2) - 0.6208;

that is, f, - 0.1434. Thus, g(T)(f) g(T)(f,) - 1068.2325, so that

var{I (T)I) c 1068.2325/231 , 4.6244. Conservative 95 percent confidence

limits on Y are given by I 4 T)j :t 4.3009. Examination of the seventeen

values of Iy()l shoved that these limits passed fourteen out of the seven-

teen frequencies passed at the preliminary screening; the three frequencies

that were eliminated are .1168, .0716, and .1115. Table 1 shows the final

fitted regression coefficient estimates for the fourteen-component function,

and Figure 3 gives a visual display of the observed series of annual

sunspot numbers and the fitted regression function. The amount of total

variance explained by the fitted function is 85.4 percent.

(2) Next, we consider the F-directed search method as described in

Section 3.2. Eighteen frequencies ware nominated as potentially signifi-

cant, which were also the largest eighteen peaks in the graph of the

mplitude density function (see Figure 1). The steps in the search proce-

dure are set out in Table 2, where we have taken - 1.0 and a. 18.

At step r, we compare the value of F;r; to the (1/(19-r))2 point ofmaxI
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the F distribution with 2 and 192+2r d.f., and note that

01%°  
- 6.91 , 0° 5  - 5.30, 7.1oz - 4.61 (4.1)

2i " 2,m 29w

Thus, 15 out of the 18 nominated frequencies were found significant by

this method, and the amount of total variance explained by the fitted

function is 86.4 percent.

To summarize the above results, we note the following. First, we

were able to separate the two major frequencies .0902 (11.087 years) and

.0945 (10.582 years) from each other which are less than 1/T apart.

Second, although periodogram analysis of the annual sunspot numbers

exhibits a "broad peak of indeterminate width" extending from the

frequency .0625 to the frequency .1250 (Bloofield 1976, p. 96), we have

shown that there are actually nine quite distinct and significant

frequencies inside that band. We also identified a new major frequency in

the series, .0039 or 256.41 years, which should be taken with some caution

since its length exceeds the length of the series itself. However, it

does suggest that the resolution of this technique is high enough to enable

it to identify cycles from series whose length is less thatL the period of

that cycle.

4.2. The Signed Annual Sunspot Numbers

Since the sunspot numbers are, by definition, nonnegative, this

introduces an implicit, but major, restriction onto the form of the fitting

_ _
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function. Any unconstrained model that attempts to follow closely the

course of the sunspot numbers over time will, therefore, be estimated by

a function that will not necessarily be nonegative at each of its minima.

Such a feature may be seen, for example, in Figure 3, where certain very

low minim are fitted by negative numbers. For many similar series, little

or nothing can be done to alleviate this problem without making the model

correspondingly more complicated. However, we are fortunate in that a

very natural and physically meaningful data transformation Is available to

us which eliminates this problem and, furthermore, dramatically improves

the performance of the model.

In 1908, G. 1. Hale discovered the existence of the solar magnetic

cycle, in which alternate il-year sunspot cycles are accompanied by a

reversal in polarity of the sun's magnetic field (Bray and Loughhead 1964).

Loosely speaking, cycles having 'positive' magnetic polarity are invariably

succeeded by cycles having 'negative' polarity, and vice-versa. These

results led Hale in 1925 to conclude that a "complete" solar cycle was

actually of the order of 22 years, from the start of a positive cycle

through to the start of the next positive cycle. This fact, now well-

established in the scientific literature, led Bracewell (1953) in a short

letter to the Journal Nature to suggest that perhaps sunspot numbers

corresponding to years of negative magnetic cycles be assigned a minus

sign, while sunspot numbers associated with years of positive cycles be

unchanged. The result of such a transformation Is a reflection through

the time axis of every other 11-year cycle of sunspot numbers. Thus, the

series would no longer be constrained in the above sense. Now, minim

would be represented by the zero-crossing points of the graph of the series

through the time axis, negative numbers would possess a natural physical
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interpretation, and maxima would be given by the sequence of alternating

positive and negative extrema of the transformed series. For our purposes,

it is necessary to assume that the solar magnetic cycle us present for

at least three hundred years prior to its discovery. It is surprizing

to note that although Bracewell's suggestion appeared thirty years ago,

we could find only three articles in which similar suggestions were put

forward; these vere in a brief reference to Bracewell's letter by Moran

(1954), a coment (but not followed up) in Brillinger and Rosenblatt (1967),

p. 215, and in a recent note in Nature, by Hill (1977).

A technical remark on the use of this transformation is in order here.

Since, in most instances, a minimum occurs midway through a year, the

question is raised as to whether that year be assigned a positive or a

negative value. One way of settling this is to examine the series of

monthly sunspot numbers for the minimum year in question, determine a

month of minimum by inspection (which, in some cases, may not be unique or

even obvious), assign plus and minus signs as appropriate up to and then

following the month of minimum, and finally, recompute a new annual mean

for that year. The general effect of such a recomputed transition sunspot

number is to smooth the transition from positive years to negative years

and vice-versa. Fortunately, it appears that precise determination of the

month of minimum is not crucial for a successful application of the methods

of this paper, and anyway, in some cases, a definitive minimum month will

be difficult to resolve by means other than by guesswork.

The graph of the amplitude density fuuction (2.20) with Af - 10-4 of

the mean-corrected signed annual sunspot numbers is displayed in Figure 4.

Ninety-four local maxima were located within the frequency band 0 'C f < Is,

and the most prominent feature visible in the graph is that the two clusters
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of frequencies in Figure I have nov been replaced by a single cluster

approximately midway between them. The transformation appears to have

removed most of the longer cycles in the original series.

2
(l) The total variance of the transformed series is *T - 4101.5426, and

from Shimshoni's Table 2(b), we again have , 100,0.05 - 0.07378. We now

need to make a similar argument as for the original series in Section 4. 1

and come up with a value for h12 the compensation factor in going from the

series of signed monthly sunspot numbers to the signed annual numbers. To

obtain the signed monthly numbers, we would have to go back to the daily

sunspot numbers; rather than do this, we note the following. For the

"positive" cycles, the ratio of signed annual mean to signed annual maximum

for each year will be the same as those for the original series, and for the

"negative" cycles, the ratio of signed annual mean to signed annual maximum

will be equal to the ratio of (original) annual mean to (original) annual

minimum, which, in turn, will be greater than or equal to the ratio of

(original) annual mean to (original) annual maximum. Hence, from the

results of Section 4.1, we can assume, for the signed series, 0.62 < h1 2 < 1.

To allow maximum flexibility here, we take hm2 0.62. Thus, 28T g 1 , 1 0 0 ,0. 0 5

- 232.65, which passes the following five frequencias:

(T) (T) Ec M3 2

1 .0449 22.272 5374.0
2 .0557 17.953 1545.6
3 .0505 19.802 983.7
4 .0611 16.367 491.9
5 .0388 25.775 298.4

NoW, J106, and, by interpolation, we get g6,100,0.05 , 0.03504, whence

2s4h 2 6 10 0 ,00 5  110.49. This critical value passes two further frequencies, 16 0.



-39-

namely,

f(T) (T) rc(T) 2

6 .0343 29.255 161.5
7 .0269 37.175 132.6

2 2

Next, J2 -8, so that 98,100,0.05 - 0.03104, and 2sah298,100,0. 0 5 - 97.88.

This critical value passes a single additional frequency, namely,

f(T) () rC )' 2

8 .0802 12.469 102.4

= .292Tnd2 2 - 1.1 which
This time, J3 79, g9 ,10 0,0 .05  T 0.02902, and 2 1959,100,0.051. hic

passes the two frequencies

f (T) P(T) Ec(T) 2.1 "(.1) P(J) .. c _)

9 .1454 6.878 95.4
10 .1379 7.252 94.6

NOW, J41 1 , g11,100,0.05 " 0.02627, and 2sT 2 l, 1 0 0 0 0 5 - 82.84. The
next largest value of .. zT)] 2 is 79.4, which corresponds to the frequency

.1508 (or, 6.63 years), but which is too small to pass the teat. Hence,

mI-10, and a screening of the residual series from the ten-component fit

gives m2-O, so that m-10.

As in Section 4.1 we make a final selection from these ten frequencies.

The best, and most parsimonious, fit to the residual series after fitting

a ten-component regression function from the above frequencies is a second-

order autoregressive process of the form (4.1), where the estimated

parameters and their standard errors are:
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parameter IMLE SE

41 .8945 .0640

#2 -. 3523 .0641

and ;2 183.1. As before, the roots of the characteristic equation are both
06

complex, indicating pseudo-periodic behavior, and the estimated spectral

density function of the residual series is given by

g (f) - 366.2/(1.9242-2.4193cos(2vf)+0.7046cos(4f)),

where 0 ; f <L, with a uaximum value at f - f* - (2v)-Icos- (0. 8584) - 0.0857.

Hence, g( (f) g (f ) - 2019.38, so that var(Ify () < 2019.38/231 - 8.74.

Conservative 95 percent confidence limits on IYj are, therefore, given by

- ± 5.9133. These limits passed all but one of the frequencies passed

at the preliminary stage, the frequency being eliminated was .0343. Table 3

lists the coefficient estimates of the nine-component regression function,

and Figure 5 gives a visual display of the signed annual sunspot numbers and

the fitted regression function. The amount of total variance of the signed

series explained by the fitted function is 91.0 percent.

(2) For the F-directed search procedure, fifteen frequencies were nominated

as potentially significant, which were also the largest peaks in the graph of

the amplitude density function (see Figure 4). The steps in the search pro-

cedure are set out in Table 4, where we have taken a - 1.0 and a - 15.

At step r, we compare the value of F(r) to the (1/(16-r))Z point of themax

F distribution with 2 and 19 8+2r d.f. (see(4.1)). Thus, 12 out of the 15

nominated frequencies were found significant by this method, and the amount

of total variance explained by the fitted function is 92.6 percent.
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4.3. The Frequency Trace

One way of judging the extent of nonstationarity In a tin series is to

complex demodulate the series at a specific frequency (Bingham, Godfrey, and

Tukey 1967). When this is done for the annual sunspot numbers at a frequency

corresponding to an 11-year cycle (Bloomfield 1976, pp. 137-140), substantial

variations over time in both amplitude and phase become Imediately visible.

The techniques presented in this paper can now be used to complement that

approach so that we can actually quantify the movment (if any) of any

frequency estimate over time. Such a direct measurement of "frequency

drift" is made possible only through a high-resolution frequency

analysis.

If a process is truly stationary over time with fixed periodicities,

then by extending the length of the physical record for that process

by concatenating additional observations to either end, the resulting

frequency analysis should not be radically effected. In other words,

we should not expect the overall shape of the graph of the amplitude

density function to alter perceptively by a lengthening of the series

record. This argument suggests two distinct ways of obtaining a

sequence of estimates of each major frequency of the series. They

are the following:

(1) Fix an initial reference time point (which could be, for

example, the first observation), compute the graph of the amplitude

density function for an initial series length of T values (where

T 1 I T) starting from that initial time point, and thereby obtain the
(T1)

estimate f of f Next, increase the record length to T2 obser-

vations by adding T2-T1 more recent data points to the T values
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already analyzed (T2 < T), and repeat all previous computations to" (T2)

get a second estimate f of f . Thus, by successively increasing
3 V

the amount of data availabie on the process by, say, n steady increments

of Ti+1-3TI observations, i-1,2,...,n, and where, typically, TU+1 - To
CT1)

we can obtain a sequence of "forward estimates" f L-l,2,...,n+l,

of f .

(2) The alternative procedure is to fix a fina._ reference time

point (the latest observation, perhaps), compute the amplitude density

function for a series record of length TI terminating at that final

time point (T1 < T), and obtain the estimate f of f3. Now,

increase the record length to T2 observations by adding T2-TI more

ancient observations to the front end of the series, and obtain a

second estimate f of f In this way, by increasing in a

systematic fashion the amount of data available on the process, we

can obtain a sequence of "reverse estimates" f * i-1,2,...,nl, of

f , where TI < Ti+ and T,+, - T.

In certain situations, such as for the sunspot numbers series, both

approaches may be of independent interest.
(T1)

Thus, if fj , i-1,2,...,n+1, denote the n+l estimates of f asCT1) a

determined by either of the two methods above, we now plot

against Ti, 1-1,2,...,n+1. If the corresponding period p3 - 1/fj is

stable over time, the resulting plot should reveal an approximate

straight-line parallel to the horizontal (time) axis. We call such a

plot the frequency trace of f(T), and, to distinguish between the two

types of estimates, we shall refer to the trace as either a forward

frequency trace or as a reverse frequency trace of f(T) according as

the initial or the final reference time point Is held fixed. There is
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no reason to expect these two types of frequency traces to be Identical.

Particular and persistent deviations from a straight-line plot will

give a quantitative description of the direction and extent of any

nonstationarity present in the series.

In Figures 6a, b, and c, we have plotted frequency traces for the

triplet of close frequencies from Table 1 around the so-called "11-year

sunspot period", namely, f (T) - 0902. 2 .T) 10050 sad f (T) . 0851 2 4
• ---

with Af - 10- 4 and Ti+l-Ti a 2, i1,2,...,n, for the annual sunspot

numbers. These plots each indicate nonstationarity of the series. For

example, if we use all 231 available sunspot numbers for 1749-1979, the

most prominent frequency is estimated to be .0902 (11.087 years); how-

ever, the most recent, and certainly the most reliable, data (at least,

since 1930) suggest that it might be wiser to estimate it (say, for

prediction purposes) as .0952 (10.504 years). Apparently, the "11-year

sunspot cycle" has been getting systematically shorter with time. Others

(such as Currie 1980) have also noticed this phenomenon, but by using

different methods. We have also plotted In Figures 7a, b, and c the

frequency traces for the three longest periods detected in the sunspot

series (see Table 1), namely. f(T) - .0107, f(T) - .0172, and f(T)
'3 (T 11

.0039. The rapid shifts in the various frequency estimates over time

may have implications for the historians' claims of variability in the

quality of the actual sunspot numbers used to compile the more ancient

data (see Eddy 1976; Izenman 1981).



-44-

5. ACK3OWLEDGETS

The author vould like to thank M.N. Siddiqui for stiaulating and

helpful conversations during the early part of this work, P. Blooafield,

Z. Paerson, T.W. Anderson, and Y. Rlnott for their coments, and

I.H. Sargent III for discussions concerning the solar magnetic cycle.

The paper was written while the author was a Visiting Scholar at the

Department of Statistics, Stanford University, during the sunmer of 1982.

-I



-45-

Table 1. Estimates of parameters for the 14 -couponent

fIt to the series of, annual mean hunspot relative numbers,

1749-1979. Frequency components are ordered by decreasing

wagnitudes of the jy(T)

i

j f(T) (T) ,(T) 0 (T) y(l
a 'a a a

0 constant 49.019

1 .0902 11.087 25.115 15.181 29.347

2 .1005 9.950 14.894 12.115 19.199

3 .0107 93.346 6.062 15.177 16.343

4 .0835 11.976 -11.246 10.807 15.597

5 .0945 10.582 9.059 -10.688 14.011

6 .0172 58.140 - 7.889 - 7.246 10.712

7 .1233 8.110 3.870 - 9.957 10.682

8 .1062 9.416 - 0.634 9.448 9.469

9 .1199 8.340 1.434 - 8.911 9.026

10 .0473 21.142 5.759 - 5.117 7.704

11 .0039 256.410 4.927 - 5.171 7.143

12 .0772 12.953 - 2.261 6.008 6.419

13 .0232 4.698 4.828 - 3.610 6.028

14 .0668 14.970 - 0.296 - 5.034 5.043

I
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Table 2. Summary of ANOVA selection of significant frequencies for the
time series of annual mean sunspot relative numbers, 1749-1979. Frequen-
cies were entered Into the model if their corresponding V,= statistic
was significant at the 1Z level (see text, Section 3.2). The total sum
of squares for the series is 364655 with 230 d.f., and a was taken as 18.

r f(T) (S ) W S (r) R 2

(r) re m-r+ ma-

1 .0902 90439 45317 193.58 25.8Z

2 .1005 59578 46632 125.20 21.7Z

3 .0107 40481 47818 83.81 52.5%

4 .0835 31159 49322 63.17 61.4Z

5 .0945 20040 49671 40.75 67.3Z

6 .0172 14896 42239 35.98 71.6%

7 .1233 10228 46359 22.72 74.4%

8 .1062 9279 47045 20.51 77.1Z

9 .1199 7895 46828 17.70 79.5Z

10 .0473 6167 46607 14.02 81.2Z

11 .0039 4254 46761 9.74 82.4%

12 .0772 4012 46411 9.33 83.6Z

13 .0232 3774 46284 8.88 84.7Z

14 .1833 3508 46015 8.38 85.7Z

15 .0668 2693 45937 6.50 86.4%
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Table 3. Estimates of parameters for the nine-component

fit to the series of signed aromal mean sunspot relative

numbers. 1749-1979. Frequency components are ordered by

decreasing magnitudes of the ly(T)

0 constant - 1.324

1 .0449 22.272 68.812 11.227 69.722

2 .0557 17.953 14.650 23.496 27.689

3 .0388 25.775 -16.952 2.297 17.107

4 .0505 19.802 15.209 1.347 15.269

5 .0611 16.367 - 9.392 7.896 12.270

6 .0802 12.469 8.973 6.045 10.819

7 .0269 37.175 3.771 9.607 10.321

8 .1454 6.878 9.154 1.792 9.328

9 .1379 7.252 - 8.067 3.156 8.662

__I I
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Table 4. Summiary of AOVA selection of significant frequencies for the
tfiae series of signed annual mean sunspot relative numbers, 1749-1979.
Frequencies were entered Into the model if theire corresponding Fa x
statistic vas significant at the 1Z level (see, test, Section 3.2). The
total sum of squares for the series Is 943355 with 230 d.f., and a vas
taken as 15.

rf(T) SS(r) RSm-r+i F (r) R 2

(r) resmax

1 .0449 626448 61198 1023.64 66.4Z

2 .0557 106372 70863 151.61 77.9Z

3 .0388 35333 66386 54.29 81.8%

4 .0505 24925 64885 39.57 84.7Z

5 .0611 13641 62575 23.43 86.2Z

6 .0802 13799 61830 22.67 87.61

7 .0269 11989 61755 20.58 88.9%

8 .1454 10783 61640 18.72 90.1z

9 .1379 8278 62154 14.38 91.01

10 .1287 5842 61765 10.31 91.61

11 .1031 4652 61713 8.29 92.11

12 .1508 4566 61667 8.22 92.6Z
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inkii paper vs describe~the amplitude density function which is

used to screen, Identify and wesoiwe frequencies In a time series. The

technique is derived from the spectral representation of the sum of an

harmonic regression function and a stochastic error process, and on the

inversion theorem associated with that representation. The amplitude

p density function possesses the desirable properties of statistical con-

sistency and high frequency resolution, and is related to the Fourier

transform of a finite-length tims series. Followuing the identification

by the amplitude density function of the dominant frequencies in a time

series, regression methods are used to fit a - idden eidcte-P

model to the data. we Also Introduceiin this paper ahigh-resolut ion

frequency trace to Investigate the extent and direction of nonstationarity

in a time eries. These techniques are Illustrated with a detailed frequency

analysis of the annual sunspot numbers series from 1749 to 1979, and includes

analysis of a physically motivated data transformation of the sunspotsei.
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